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Chaos induced by quantum effect due to breakdown of the Born-Oppenheimer adiabaticity
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Chaos in the multimode nonadiabatic system constructed by Héll&@hem. Phys92, 1718(1990], which
consists of two diabatic two-dimensional harmonic potentials with the Condon coupling, is studied. A thorough
investigation is carried out by scanning the magnitudes of the Condon coupling and the Duschinsky angle. To
elucidate mechanisms that can cause chaos in this quantum system, the statistical properties of the energy
levels and eigenfunctions of the system are investigated. We find an evidence in terms of the nearest-neighbor
spacing distribution of energy levels and other measures that a certain class of gha@dyisnduced by the
nonadiabatic interaction due to breakdown of the Born-Oppenheimer approximation. Since the nonadiabatic
transition can induce repeated bifurcation and merging of a wave packet around the region of quasicrossing
between two potential surfaces, and since this interaction does not have a counterpart in the lower adiabatic
system, the present chaos deserves being called “nonadiabatic chaos.” Another type of chaos in a nonadiabatic
system was previously identifigd. M. Leitner et al, J. Chem. Phys104, 434 (1996] that reflects the
inherent chaos of a corresponding adiabatic potential. We present a comparative study to establish the simi-
larity and difference between these kinds of chaos.
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[. INTRODUCTION These models are related to many realistic physical systems,
e.g., micromasergl7], mesoscopic magnefd8], electron-
Quantum chaos has long been a controversial subject ittansfer system$19], etc., and while an understanding of
physics[1] in that it is extremely difficult to define chaos in these models can hence have many practical implications,
the Schrdinger linear equation in a convincing way. None- their chaotic aspects are not well understood.
theless one often observes complexity in quantum phenom- We have been studying chaos in a nonadiabatic system
ena such as in spectral features, eigenfunctions, and dynamiue to breakdown of the Born-Oppenheimer approximation,
ics in molecular processes, solid-state physics, nucledn which two or more potential functions are coupled through
physics, and so on. The most widely accepted terminology nonadiabatic interaction. Since a wave packet placed on
alternative to “quantum chaos” is “quantum chaology” due one of the potential surfaces can undergo repeated bifurca-
to Berry[2] , which is meant as a quantum or semiclassicaltion and merging around their quasicrossing region, one can
study of a system whose classical counterpart exhibits chao@aively) expect “chaos” to occur. This kind of complicated
Despite the clear definition of quantum chaology, “quantumwave packet motion has been theoretically observed even in
chaos” is quite often used as a synonym of it. Many intrigu-one-dimensional nonadiabatic systems such as electron
ing facts have been found in quantum chaological systemsransfer in Nal molecule, which can be expected to be ob-
they often have the Wigner-type nearest-neighbor spacingerved experimentally via the pump-probe femtosecond pho-
distribution of energy eigenvalues, whereas integrable sysoelectron spectroscod0]. Although the present study is
tems show the Poisson-type distributipi+3]. Contrary to  motivated by the multidimensional or multimode effects in
Berry's statistical argumerf4], Heller found some highly electron transfer in molecular systems, our report is con-
excited states in a quantum chaos system to localize spatialberned with a rather general and simplified scheme to inves-
along classicalunstable periodic orbits, which is called tigate common underlying features of those systems. To this
“scars” [5]. Deterministic diffusion in a classical chaotic aim, we study a simple system that was proposed by Heller
system is often suppressed in the corresponding quantuf21], which can be regarded as a simple model for the above-
chaos systerf6]. The curious relationship between quantumlisted systems by rewriting them in a spin-boson model. The
tunneling and chaods’—10| is another topic. The semiclassi- Heller system consists of two-dimensional, two diabhtic-
cal quantization of energy levels mainly based on themonic potentials, which are nonadiabatically coupled under
Gutzwiller's trace formuld1,11] and the Fourier transforma- the Condon approximation. We call ittevo-mode-two-state
tion of the time-correlation functiofl2,13 remain among (TMTS) system[22].
the most difficult subjects in the study of chaos. Heller stated in his study on his own system that “the
On the other hand, there are quantum systems that do nhbpping from one energy surface to another is enough to
have a naive classical counterpart, and even in such systernause classical chaos and strong mixing of the levels quan-
one can expect chaotic phenomena. For example, several auim mechanically.” He actually has shown that his system
thors have studied “chaos” in spin-boson modglgl—16.  exhibits chaotic properties in terms of his spectral measure
[23]. Although his argument is clear and sound, there re-
mains a highly nontrivial question about the mechanism of
*Email address: fujisaki@mns2.c.u-tokyo.ac.jp “chaos” in the nonadiabatic systelisee a paragraph below
TEmail address: kaztak@mnsz2.c.u-tokyo.ac.jp the next ong
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In a previous paper, we studied highly excited eigenfunc- N
tions in the TMTS system with Heller's “chaos” values of
the system paramete@2]. In the study, among rather char- 0
acterless “chaotic” eigenfunctions that are uniformly wide- ! N 4
spread in configuration space, we have found two extreme 2a %
types of the eigenfunctions that favor to localize either on the
diabatic surface or the adiabatic surface. It also has been 0
shown that the behavior of nonadiabatic transition depends
strongly on the locations where an initial wave packet is
prepared, reflecting the properties of the localized eigenfunc- FIG. 1. A schematic representation of Heller's TMTS system.
tions. This fact in turn can provide a guiding principle to The distance between the centers of the potentialsajsadd the
control the rate of electron transfer by using laser techniquesngle between the relevant crossing sedotted ling and the pri-
or by choosing appropriate solvents. mary axis of each potentigtashed lingis 6. Inset: The perspec-

In this paper, we concentrate on the more chaotic aspeéiﬁ/e of the TMTS system. The desymmetrization is represented by
of this nonadiabatic system. There can be two types of chad4e difference of the energy minimae=eg—e,.
that may occur in a nonadiabatic systeft) chaos directly
reflecting the chaos on the adiabatic potential surface2nd &g=Xcosf+(y+a)sind, ng=—Xxsinf+(y+a)cose.
chaos that is induced by the very nonadiabatic interaction (4)
itself. The former has already been identified by Leitner . ) i
et al. using Jahn-Teller moleculd&4]. To identify the latter Note _that this is dlff_erent from our preV|ous_ch0|ce of the
class, we compare the nonadiabatic system with the corré00rdinate$22], and is the same as Hellery;, is a nuclear
sponding lower adiabatic system frostatistical points of ~ Kinetic energyV; (i=A,B) diabatic potentials of each elec-
view by systematically scanning the values of the nonadiatronic statei . J the nonadlabatlc coupling constar_1t _between
batic coupling constant and the Duschinsky angle. The medl€ €lectronic states, and (i =A,B) the energy minima of
sures we employ are rather popular ones; the nearesf?€ potentials. The geometrical meaningsaadnd ¢ are il-
neighbor spacing distributiotNNSD) of energy levelg3], lustrated in Fig. 1. A_ nonvanishing, which corresponds to
A, statistic of Dyson and Meh(g] (or called spectral rigid- the so-called Duschinsky ang[@6], causes a complicated
ity [11]) and the amplitude distribution of the eigenfunctions €0UPling betweex andy (Duschinsky effects The relevant
[4,25]. Here we show a numerical evidence of the existenc&r0ssing seam is denoted by a dotted line in Fig. 1. In this
of the second class of chaos. This chaos is really intrinsic t§oordinate system, it is approximately given yy0. (See
nonadiabaticity in that no classical chaos can play a role. @ls0[22].) _ _

This paper is organized as follows: In Sec. Il, we describe 10 obtain the energy levels and eigenfunctions of the
Hellers TMTS system and the numerical procedures to obTMTS system, we directly diagonalize the Hamiltonian of
tain the energy levels and eigenfunctions of the system. Ifh€ system. To this end, we first unitarily transfofwith

Sec. Il , we investigate the statistical properties of the en-

o (_pergp_ective)

(energy contours)

ergy levels and eigenfunctions of the system. In Sec. IV, the U—i 11
corresponding properties of the lower adiabatic system are - \/5 -1 1
examined. In Sec. V, we summarize the paper, identifying
the nonadiabatic chaos. such that
Il. HELLER'S TMTS SYSTEM % Ut TyintVi—J V_ 5
AND NUMERICAL PROCEDURES H=U"HU= v Tt V,+3)° (5
We now introduce Heller's TMTS system along with our B N . )
numerical procedure to obtain the energy spectrum. Thi/hereV.=(Va=Vg)/2 are explicitly given by
starting Hamiltonian igsee Fig.
: ere V. = S0d(x—B)2+ Zalyi- Zufats Zutate 8
TkintVa J L T2 200 T 2% 2%y 2
H= 3 Tt Vg’ D (6)
where 29y T2 A" €B
V_=(Aw)’xy—wjay+ —5—, @)

1 1 _
Tin=75 Pkt Py, Vi=5 (o +oyr)+e (i=AB)  and

) ~ -
w)2<=w>2< co< 6+ w§ Sir? 6, >

J=wfsir? 9+ w) cod 0,

with
(Aw)?

~2
Wy

Ex=xcosf—(y—a)sing, nya=xsin t9+(y—a)cos<9,3 (Aw)?=(w;—wf)cosfsing, a a.
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Now we define the eigenstates Bfj,+ V. as|ny,ny), i.e., TABLE I. System parameters.
(Tkin+v+)|nx,ny>:Enx,ny|nx 1ny>1 (8) f Wy Wy a [N €p
~ ~ 1.0 0.8716 1.1725 3.0 0.0 0.173
Enx,ny:ﬁwx(nx"_ 1/2)+hwy(n,+1/12). (9)

We also define electronic states that rotate the diabatic statéisan in the case of the nonadiabatically coupled system.

liy (i=A,B) by UT, i.e., Again, we have used the screening method to cross check
some of the results.
[1)y=UT|A)=(|A)+[B))/\2, (10 Finally, the system parameters adopted throughout this
paper are listed in Table I. In order to study how chaos can
[2)=UT|B)=(—|A)+[B))/2. (1)  appear generally in nonadiabatic systems, we scan the values

Then, by taking the direct product df,,n,) and |i)) of J (nonadiabaticity and 6 (Duschinsky angleto see its

(i=1,2) as a basis set to express the Hamiltonian, we obtaifio"S€duence in .the sta_tistic_al properties of the system.
the matrix elements analytically as Heller's system with twdvibrationa) modes and twdelec-

tronic) states is a minimal model for this purpose. To our
Ne,ny|Hyns,n))=(n,,ny|Tein+ V. —3JIn. .0/ best knowledge, there has been no work of this kind in the
(N Ny Hagny ng) =y ny | Tin + V4 xMy) past. The systematic survey in the present approach should
=(En 0, * 6+)5nx,n;5ny,n)’1, (12)  also be quite useful for our future study of control of nona-
diabatic systems by means of varying solvents and/or apply-

(neny Hod g ,ny) = (ne,ny | Tgn + Ve + 3% 0 ing external fieldd 29

:(Enx,ny+ 6—)5nx,n)’<5ny,n)’11 (13
Ill. STATISTICAL PROPERTIES

(ny,ny[Hyng ,nyy=(n,,ny|V_[n;,ng) OF THE NONADIABATICALLY COUPLED SYSTEM
——T A. Statistics of the energy levels
:[Clanx,n>’<+C2( nx'{'lénx,n)’(fl 9y

The NNSD of energy levels is one of the established mea-
+ \/n_X 5nx e ](Vng+1 5ny -1 sures to identify chaos in nuclear physics and molecule phys-
* Y ics. The NNSD's of model system.g., billiard systems

+ny 8n 1) [2,3]), and realistic system&.g., triatomic moleculef30])
T have been examined in the past, and it has been established
€Epr— €R that the NNSD of a quantum system usually becomes the
2 5nx ,n)’(5ny ,n)’/v (14) Wigner type
whereH;; = (i|H|j) (i,j=1,2), 8, m is the Kronecker delta T T,
function, and P(S)=5Sexp — 57, (15)
_ }~ 72, 1~ 2,2, ept€p _ if the corresponding classical system is chaotic with time-
€= T % 2%y 2 v reversal symmetry. Hereafter we approximately call this type
the Gaussian-orthogonal ensemi&OE) type. On the other
2 hand, the NNSD of a quantum system usually becomes the
- fi h(Aw) Poi i
ci=[(Aw)a-wja]l \| — c=—— olsson type
@y 2\ ooy P(S)=exp— S} (16)

We have confirmed convergence of the results by changin
the size of the basis sdAround E=29, we need a-7000
X 7000 matrix to achieve converged results if the system i
“chaotic.”) We also used the screening meth@¥,22 to
cross check some of the results, and we have demonstrated
the convergence of the lowest 1200 eigenenergies to at Ieaé?ed by

ﬁthe corresponding classical system is integrable. While the
NSD measures a short-range correlation among the energy

evels, theA 5 statistic(spectral rigidity is designed to detect

long-range correlation among thdi®|. The latter is de-

five significant digits. 1 (E+LR
The lower adiabatic system is defined by the Hamiltonian A5(E,L)= minE [N(x)—Ax—B]%dx, (17
Tiin+ VagWhereV, =V, — V2 +J2. Thus we again use the AB = JE-LE

eigenstates of the Hamiltoniah,;,+ V. as the basis set to . ] . )
represent the matrix elements. For efficient computation ofvhereN(x) is the unfolded cumulative level density of the
the matrix elements, we have used the Gauss-Hermitdystem considereB]. The average ofA3(E,L) over the
quadraturg 28]. Nevertheless, this integration is time con- energy, which is denoted bfs(L), of a quantum system
suming, and hence the computational time is much longeusually behaves like
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T 3

o 1 i J:o,s'.ew.o,'anh;r;f;gg _____ — " J=03.6-0.0 anharmonic 'w
As(L)=—(InL—0.068, (19 1] GOE o 25| GOE -
. 03 H ‘\ E 2k
if the corresponding classical system is chaotic with time-g oe} g s
reversal symmetry. This form can also be derived from the |||/ ; L puenannanay
GOE [3]. On the other handA;(L) of a quantum system o Ll ol “f.i""'
usually behaves like | .-"'. _________________________________________
L 00 oo‘i ; |I0 1‘5 2'0 2‘5 30
J— L
Az(L)=— 19
3( ) 15 ( ) ! X 8 J=0.3’,ﬂ=ﬂ6,'anharr)'1mic "a
\n GOE i 25k QOB

when the corresponding classical system is integrable.
Since the nonadiabatic system as well as the other spin
boson models have no naive classical counterpart, applica2
tion of these measures would be doubtful even if they are
well established in quantum chaology. Nevertheless, the
NNSD’s have been calculated for many other nonadiabatic
systems successfully: Cederbaum and co-work&ts$ stud-
ied Jahn-Teller molecules that have conical intersections ant
found that the NNSD for N@is of the GOE type whereas Ll N Sy o Sl By ey ——
that for GH," has a ‘mixed’ character between the GOE \ - g
type and the Poisson type. Their model systems tiaxee
vibrational modes andwo electronic states. On the other
hand, Kusshowed that a simple spin-boson model which has2
one (vibrationa) mode andtwo (electronig states does not
exhibit any universal character in the NN$B2]. After the
work of Kus Graham and Hanerbach investigated a similar
spin-boson model with more numbers of spins, and found
that the NNSD approaches the GOE type even with (@ie
brationa) mode[33]. Their system is considered as a nona-
diabatic system wittone vibrational mode andnany elec- os N GOE - | 2s| 608 -
tronic states, it is hence interesting to apply the statistical T
measure to the Heller system witlo vibrational modes and . Tl

pes)

sson -
25} GOE ~-eeee

ALy

two electronic states. = L & 1 s
Some notes: We did not desymmetrize the system in cast 1t e

of #=0 andx/2, and therefore the system has a reflection oz |{] sk Pl

symmetry with respect to theaxis. We have confirmed that . ; . ,.-".. -----------------------------------

desymmetrization changes the results only slightly. To cal- % es 1 15 2 25 3 o & 10 = = = w
culate the NNSD’s and thé s statistics, we unfold the en- .~ ° umn: NNSD's of Heller TM'FS t "
ergy levels betweerE=25 and E=35 (about 600 levels - <. LETL coumn. S 01 Meters system wi

. . . g J=0.3 (weak couplingg and weak anharmonicity. From top to bot-
were includegl using a third-order polynomial fitting for the - : . )

: . h tom, 6=0.0, /6, #/3, and=/2. Right column: The corresponding

cumulative level density31]. In this paper, we do not use A. statistics
any interpolating formulas like the Brod$4], or the Berry- 8 '
Robnik [24] distributions. The results with increasing
strength of the nonadiabatic couplidg@re shown in Figs. 2,
3, and 4, which are discussed below.

where & and »; have been defined in Eg&) and (4), and
ay and a, represent the strength of nonlinearity. Note that
addition of these terms does not induce any chaos in the
diabatic systems because the variables are separable. The
_ _ _ o - values of nonlinearity are taken ag=0.001¢,=0.0012,
First we investigate the cage=0.3, which is classified as which bring about a few percent energy-level difference.
a weak coupling (diabatig case in the sense thal  Nonetheless, it makes the energy-level statistics more ge-
<hwy,hwy. In this case, the energy-level statistics for theneric and natural. See Fig. 2: The NNSD’s #+0 andw/2
system show the anomalous behavior of l@monic limit  appear to be clear Poisson distributions. Each of the skewed
[35] because the system consists of nearly uncoupled hasystems withd=7/6 and w/3 shows a clear hole &=0,
monic oscillators. To eliminate this nongeneric effect, wealthough they are not a clear GQRVignen type. For the

1. Weak coupling case

add the fourth order terms to the diabatic potentials other cases discussed beldthe intermediate and strong
coupling cases the inclusion of the nonlinearity does not
% Yy o4 qualitatively change the resulf29], so the calculations be-

Avi 4 &t 4 " (i=AB), (20 low are performed with the original harmonic potentials.
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FIG. 3. Left column: NNSD's of Heller's TMTS system with _ FIG. 4. Left column: NNSD’s of Hellers TMTS system with
J=1.5 (intermediate coupling From top to bottomp=0.0, 7/6, ~ J=7-5 (strong coupling From top to bottom#=0.0, =/6, /3,
73, and=/2. Right column: The correspondiniy, statistics. and /2. Right column: The correspondiny; statistics.

) 2 I_ntermedlau_e COUp“ng_ case _ ~ the level clustering and the Poisson trend, especially gfor

Next we investigate the intermediate coupling case, i.e.— 7/6 or 9= /3. However, the\ ; statistics deviate from the
J=1.5~fiwy fiwy. (This is Heller's “chaos” value[21].)  gyaight line[Eq. (19)] for largeL values. Except for the case
From Fig. 3, when the Duschinsky angle has intermediat 0, the A statistics have lower values than E49) and

values, i.e.f=7/6 or 6= 7/3, this TMTS system shows the oo X )
typically quantum chaotic behavior both in the NNSD andapproach Eq(18). This might reflect the mixedori + sto-

A, statisticssee Eqs(15) and(18)]. This is consistent with chastic seasstructure of the Iowe_r adiabatic system and sug-
the statement of Heller based on his own spectral criterioy€Sts the use of some interpolating formulas. Thus the strong
[21]. Heller's criterion of chaos measures an averaged propcoupling case shows mostly a regular spectrum when judged
erty of eigenfunctions, while the NNSD an}; statistic ad- by the energy-level statistics. It thus turns out that the chao-
dress the statistical properties of energy levels. Thus th#city of the system is not simply monotonic with respect to
present intermediate coupling system has been confirmed tbe magnitude of the coupling paramederalthough it leads
be chaotic in these aspects. the system to deviate from the harmonic state and to ap-
proach a more adiabatic-favored and anharmonic situation.
Thus, we need to clarify the nature of the dynamics on the
We further proceed to the strong coupliigdiabati¢  corresponding adiabatic state. We will come back to this
case, i.e.J=7.5>hw,,hw,. From Fig. 4, we clearly see issue in the next section.

3. Strong coupling case
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. ’ ) . ’ ) . FIG. 5. First row: Eigenfunc-
w0 . . . " . . . " . . . tions squaredfrom left to right,
800th, 810th, and 820th of
.l | ol | ol | Heller's TMTS system on surface
A with J=0.3 (weak coupling
i . ol . ol and 6=w/6. Second row: The
corresponding eigenfunctions
Al . Sl (squaredion surfaceB. Third row:
The corresponding amplitude dis-
" o o tributions of the eigenfunctions on
-0 10 10 s ° 5 1 10 s 0 s 1o surfaceA. The dashed line repre-
sents the Gaussian with widi
25 T T T T 18 T T T T T T T 18 T T T T T T T
caln ol calion — | wl calm ] =0.053.
20 - wual 14
12 12
15
5 P 10 | S 10 |
£ T | H g ol
w0l I
6 Ak el
\ oL 2|
. .....m|:m||I|||||” ..‘u.mulll\“ j ol S
-04 03 02 01 0 01 02 03 04 -04 03 02 01 0 01 02 03 04
9 ¢ 4
B. Amplitude distributions of the eigenfunctions each diabatic surface. That is, each surface has the area

In this section we investigate a statistical property of the™ 27E/@xwy, then the width is expected to be
eigenfunctions, namely, the amplitude distributiph?25].
The amplitude distribution for thath eigenfunction on sur-
facei (i=A,B), denoted byP,(¢), is defined by the fre- o= \/
qguency distribution of the amplitudes) of the eigenfunc-
tion that is randomly sampled at points that are energetically
accessible in configuration space. We actually tak®000  where we have usel=29 that is the energy of interest. The
points. results forPﬁ(¢) are shown in the third rows of Figs. 5, 6,
According to Berry[4], the histogram oiPin(qﬁ) should and 7 with the corresponding eigenfunctions on the diabatic
reflect the chaotic property of an eigenfunction. He conjecsurfacedfirst and second rowsin terms of this criterion, let
tured that the amplitude distribution for a classically chaoticus examine selected eigenfunctions: 800th, 810th and 820th
system should become a Gaussian distribution, with 6= 7r/6 for each coupling strength=0.3, 1.5, and 7.5.
Their energies are around 289, which are much higher
than the bottle-neck energy of the lower adiabatic surface

N # AT
(6)= =0 =51, (21)

In Fig. 5, we can see that the amplitude distributions are
with the widtho=1/\/S whereS s the area of the energeti- more or less different from the Gaussian, E2fl), with the
cally accessible region. This is called Berry’s criterion of width, Eq.(22). These eigenfunctions have rather clear nodal
“chaos” for eigenfunctions, and has been tested successfullpatterns that can be easily counted. Hence these amplitude
in the literature25]. In case of a single surface with a po- distributions are far from chaos. Since there are many empty
tential V(x,y), the areaS is easily identified; it is the area regions inside the equienergy contour, their amplitude distri-
enclosed by a curvex(y) satisfyingV(x,y)=E. However, butions concentrate ab=0. The top-right figure of Fig. 5
in case of coupled surfaces as in our nonadiabatic system, tlseems a little “disordered,” but the amplitude distribution
meaning ofSis not necessarily clear. In this paper, we sug-still deviates from the Gaussian. Thus these eigenfunctions
gest using the sum of the areas enclosed/[{x,y)=E on  turn out to be nonchaotic.

Wyy

2 =0.053, (22)

1. Weak coupling case
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FIG. 6. First row: Eigenfunc-
tions squaredfrom left to right,
800th, 810th, and 820th of
Heller's TMTS system on surface
A with J=1.5 (intermediate cou-
pling) and #= /6. Second row:
The corresponding eigenfunctions
(squareglon surfaceB. Third row:
The corresponding amplitude dis-
tributions of the eigenfunctions on
surfaceA. The dashed line repre-
sents the Gaussian with widit
=0.053.

FIG. 7. First row: Eigenfunc-
tions squaredfrom left to right,
800th, 810th, and 820th of
Heller's TMTS system on surface
A with J=7.5 (strong coupling
and 6=/6. Second row: The
corresponding eigenfunctions
(squareglon surfaceB. Third row:
The corresponding amplitude dis-
tributions of the eigenfunctions on
surfaceA. The dashed line repre-
sents the Gaussian with widi
=0.053.
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FIG. 8. Poincaresurfaces of
section for the lower-adiabatic
system E=28). The nonadiabatic
coupling is J=0.3 (left), 1.5
(middle), and 7.5 (right). The
Duschinsky angle i9= 7/6.
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2. Intermediate coupling case of a direct reflection of that on the adiabatic potential surface

From Fig. 6, we can clearly see that the amplitude distri-a”q intrinsic chaos_purely induced by t_he nonadiabatic inter-
butions with a variety of energies are very similar to the@ction, a comparative study of dynamics on the correspond-
Gaussian. Therefore, according to Berry’s criterion, the sysing adiabatic system is inevitable. We here study Ihe-
tem with the above choice of parameters is well “quantumPendence of the lower adiabatic system fixiirg /6.
chaotic.” This result reinforces Heller's conclusidi2l] The classical Poincarsurfaces of section at the crossing
based on his spectral criteri¢®3] . (Note, however, that the seam {=0) are drawn in Fig. §22]. It turns out that the
spectral criterion uses only aaveragedproperty of eigen- ratio of chaotic sea to tofstable arepdoes not change dras-
functions) Thus it turns out that the intermediate coupling tically with J, and that the area of the latter is rather wider

case is an undisputed chaos by any statistical measure. ~than that of the former. Thus, it is highly expecfed] that
none of the forecasted NNSD'’s should be similar to the GOE

type in contrast to the case of the full coupled system with
3. Strong coupling case J=1.5. We next confirm this by actually calculating the sta-

. . . . tistical properties of the energy levels and eigenfunctions on
The strong coupling caséig. 7) is in a sense similar to the lower adiabatic potentials.

the weak coupling case: the amplitude distributions more or
less deviate from the Gaussian. All these figures exhibit clear
nodal patterns that can be easily counted. In fact, we can see
that left two are confined in a torus whereas the right mostis The NNSD’s andA 5 statistics are shown in Fig. 9. Both
confined in another torus. Though not shown here, this canf these measures suggest that the level statistics are basi-
be clearly confirmed if one uses the adiabatic representatiorally “regular.” Following the tentative argument using the
Berry-Robnik distributior{24], the chaos-tori ratio is nearly
equal to the Berry-Robnik parametgrand this implies, in
V. STATISTICAL PROPERTIES this case, that the NNSD’s are rather similar to the Poisson
OF THE LOWER ADIABATIC SYSTEM type. We recall that the nonadiabatic system with 7.5
(strong couplingis mostly regular in the energy-level statis-
tics. This is presumably so because the strong coupling case
To identify and distinguish two types of chaos in nona-is close to the adiabatic limit and the dynamics on the nona-
diabatic systems as stated in the Introduction, namely, chaafiabatic system should be dominated by that on the corre-

B. Statistics for the energy levels

A. Poincare surface of section

'E T T T T T 1 T T T T 1

08 08 [ 08 F % E

0.6 06 0.6

P&
P(S)
Sy

04 H |/ 04 H | 04 H |

o2 M 02 Hf 02 Hf

FIG. 9. First row: NNSD’s of
e o5 1 15 2 25 3 the lower adiabatic system. From
left to right, J=0.3, 1.5, and 7.5
while fixing 6= 7/6. Second row:
The corresponding ; statistics.

o5k GOE ~-rve- J o5k GOE -~ p o5 b GOE -+ J

ALy
n
ia)
n
L
O
n
L

066221-8



CHAOS INDUCED BY A QUANTUM EFFECT DUE TO.. .. PHYSICAL REVIEW B3 066221

10 T T T 10 T T T 10
{idtes
T - S, of
‘ ’W%ﬁ/ﬂ
i
> ol 9 g = N ol
o
48
sl @%WWWW\W | sl FIG. 10. First row: Eigenfunc-
tions squaredfrom left to right,
o . o 656th, 664th, and 671sbof the
s > 7 © lower adiabatic system with)
o - - - =15 and #=n/6. Second row:
sl cash —— | o T The corresponding amplitude dis-
or ] tributions. The dashed line repre-
of ‘ sents the Gaussian with widi
s s s, i =0.062.
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sponding adiabatic potential surface. In fact, the measures fdower adiabatic potential surface nor that on the diabatic sur-
the adiabatic and nonadiabatic cases With7.5 are similar.  face (the diabatic surface is a harmonic potentid/e can
draw this conclusion from the fact that the adiabatic dtse
C. Amplitude distributions of the eigenfunctions middle of Fig. 9 indicates rather Poisson trends for both

Selected eigenfunctior@56th, 664th, and 671sof the measuregthe A5 statistic is along the Poisson line until

. . e - - =5), whereas the nonadiabatic c4tee second row in Fig.
lower adiabatic system with=1.5 andf= /6 are shown in 3) indicates completely GOE trends for both measures.

that. in thi take—0.062 b i Therefore, as far as we know, this is the first evidence that
at, In this case, we taxe=1u. ecause e area en-..paos” can be induced by the nonadiabatic coupling within

closed by the equienergy contour wil=28, which is the the pure quantum mechanical scheme. Hence we think that it

energy of interest, is-260. As are the cases of Figs. 5 and 7, yeseryes to be called “nonadiabatic chaos” to distinguish it
these amplitude distributions deviate more or less from th?rom the chaos studied by Leitnet al

Ggussian, indicat_ing a noncha}otic fea.ture. This is con;istent The present paper has been concentrated on the statistical
with the level statistics shown in the middle figures of Fig. 9. roperties of spectra and amplitude distribution of the eigen-
Note that these parameter values induced strongly chaot ates. To clarify the dynamical nature of the present chaos
features in the corresponding nonadiabatic system. Neverthﬁ'owever more should be explored. The mechanism and sce'-
less, the eigenfunctions on the adiabatic potential surface qfiq of 6nset of the chaos needs to be elucidated. In particu-
.this case arefnostly regular in t.he,fanergy range studied. Th|§r, the relationship between the genesis of chaotic eigen-
IS due_to t'he quantum smoot.hmg. gffeﬁBG], and it might ¢, ctions and the dynamics of surface hopping should be
be Sa'd,' in turn, that nonadiabaticity breaks the quantuny|4rified [22]. In this regard, our comparative study between
smoothing effect. the hopping trajectories and the corresponding chaotic eigen-
functions (Figs. 6, 7, and 8 in Ref[22]) shows that the
simple surface-hopping view can well represent the first or-
V. SUMMARY der feature of the wave functions in an initial stage. How-

The statistical properties for the nonadiabatic and the cor€V€l Such an intuitive picture of “mode mixing(thaos is
responding adiabatic systems we have numerically 0bserve(a/entually deteriorated, since the interference effect is essen-
are summarized in Table Il. We thus conclude that the chaogal to produce guantum spectra, T.O study further, the path-
in the nonadiabatic system with the intermediate Coup“nglntegral methods and/or semiclassical methods must be use-
(J=1.5) and the intermediate Duschinsky angkg., 6 o ) .
—7/6) has been induced purely by the nonadiabatic cou- TABLE II. Characterlstlcs of the TMTS system with the inter-
pling, which is peculiar to quantum mechanics. Leitatal. r_nedla_te Duschinsky angled¢ «/6). The other parameters are
made an extensive study to compare nonadiabatic systerﬂ%ted in Table I.

(Jahn-Teller moleculesvith their adiabatic counterpartthe
lower adiabatic systemg24]. They say that “most of the

Lower adiabatic Nonadiabatic

irregularity in the full spectra arises from the irregularity in system system
the spectra obtained using the adiabatic potential.” The cas@/eak coupling §=0.3) ~mixed ~mixed
investigated by Leitneet al. might be quite universal and Intermediate coupling)=1.5) ~mixed chaos
natural for JT molecules. On the other hand, the chaos in outrong coupling §=7.5) ~ mixed ~mixed

nonadiabatic system is not a simple reflection of chaos on the

066221-9
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