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Chaos induced by quantum effect due to breakdown of the Born-Oppenheimer adiabaticity

Hiroshi Fujisaki* and Kazuo Takatsuka†
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~Received 1 December 2000; published 29 May 2001!

Chaos in the multimode nonadiabatic system constructed by Heller@J. Chem. Phys.92, 1718~1990!#, which
consists of two diabatic two-dimensional harmonic potentials with the Condon coupling, is studied. A thorough
investigation is carried out by scanning the magnitudes of the Condon coupling and the Duschinsky angle. To
elucidate mechanisms that can cause chaos in this quantum system, the statistical properties of the energy
levels and eigenfunctions of the system are investigated. We find an evidence in terms of the nearest-neighbor
spacing distribution of energy levels and other measures that a certain class of chaos ispurely induced by the
nonadiabatic interaction due to breakdown of the Born-Oppenheimer approximation. Since the nonadiabatic
transition can induce repeated bifurcation and merging of a wave packet around the region of quasicrossing
between two potential surfaces, and since this interaction does not have a counterpart in the lower adiabatic
system, the present chaos deserves being called ‘‘nonadiabatic chaos.’’ Another type of chaos in a nonadiabatic
system was previously identified@D. M. Leitner et al., J. Chem. Phys.104, 434 ~1996!# that reflects the
inherent chaos of a corresponding adiabatic potential. We present a comparative study to establish the simi-
larity and difference between these kinds of chaos.

DOI: 10.1103/PhysRevE.63.066221 PACS number~s!: 05.45.Mt, 34.10.1x, 34.30.1h, 34.70.1e
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I. INTRODUCTION

Quantum chaos has long been a controversial subjec
physics@1# in that it is extremely difficult to define chaos i
the Schro¨dinger linear equation in a convincing way. Non
theless one often observes complexity in quantum phen
ena such as in spectral features, eigenfunctions, and dyn
ics in molecular processes, solid-state physics, nuc
physics, and so on. The most widely accepted terminol
alternative to ‘‘quantum chaos’’ is ‘‘quantum chaology’’ du
to Berry @2# , which is meant as a quantum or semiclassi
study of a system whose classical counterpart exhibits ch
Despite the clear definition of quantum chaology, ‘‘quantu
chaos’’ is quite often used as a synonym of it. Many intrig
ing facts have been found in quantum chaological syste
they often have the Wigner-type nearest-neighbor spa
distribution of energy eigenvalues, whereas integrable s
tems show the Poisson-type distribution@1–3#. Contrary to
Berry’s statistical argument@4#, Heller found some highly
excited states in a quantum chaos system to localize spa
along classicalunstable periodic orbits, which is called
‘‘scars’’ @5#. Deterministic diffusion in a classical chaot
system is often suppressed in the corresponding quan
chaos system@6#. The curious relationship between quantu
tunneling and chaos@7–10# is another topic. The semiclass
cal quantization of energy levels mainly based on
Gutzwiller’s trace formula@1,11# and the Fourier transforma
tion of the time-correlation function@12,13# remain among
the most difficult subjects in the study of chaos.

On the other hand, there are quantum systems that do
have a naive classical counterpart, and even in such sys
one can expect chaotic phenomena. For example, severa
thors have studied ‘‘chaos’’ in spin-boson models@14–16#.
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These models are related to many realistic physical syste
e.g., micromasers@17#, mesoscopic magnets@18#, electron-
transfer systems@19#, etc., and while an understanding o
these models can hence have many practical implicatio
their chaotic aspects are not well understood.

We have been studying chaos in a nonadiabatic sys
due to breakdown of the Born-Oppenheimer approximati
in which two or more potential functions are coupled throu
a nonadiabatic interaction. Since a wave packet placed
one of the potential surfaces can undergo repeated bifu
tion and merging around their quasicrossing region, one
~naively! expect ‘‘chaos’’ to occur. This kind of complicate
wave packet motion has been theoretically observed eve
one-dimensional nonadiabatic systems such as elec
transfer in NaI molecule, which can be expected to be
served experimentally via the pump-probe femtosecond p
toelectron spectroscopy@20#. Although the present study i
motivated by the multidimensional or multimode effects
electron transfer in molecular systems, our report is c
cerned with a rather general and simplified scheme to inv
tigate common underlying features of those systems. To
aim, we study a simple system that was proposed by He
@21#, which can be regarded as a simple model for the abo
listed systems by rewriting them in a spin-boson model. T
Heller system consists of two-dimensional, two diabatichar-
monic potentials, which are nonadiabatically coupled und
the Condon approximation. We call it atwo-mode-two-state
~TMTS! system@22#.

Heller stated in his study on his own system that ‘‘t
hopping from one energy surface to another is enough
cause classical chaos and strong mixing of the levels qu
tum mechanically.’’ He actually has shown that his syste
exhibits chaotic properties in terms of his spectral meas
@23#. Although his argument is clear and sound, there
mains a highly nontrivial question about the mechanism
‘‘chaos’’ in the nonadiabatic system~see a paragraph below
the next one!.
©2001 The American Physical Society21-1
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In a previous paper, we studied highly excited eigenfu
tions in the TMTS system with Heller’s ‘‘chaos’’ values o
the system parameters@22#. In the study, among rather cha
acterless ‘‘chaotic’’ eigenfunctions that are uniformly wid
spread in configuration space, we have found two extre
types of the eigenfunctions that favor to localize either on
diabatic surface or the adiabatic surface. It also has b
shown that the behavior of nonadiabatic transition depe
strongly on the locations where an initial wave packet
prepared, reflecting the properties of the localized eigenfu
tions. This fact in turn can provide a guiding principle
control the rate of electron transfer by using laser techniq
or by choosing appropriate solvents.

In this paper, we concentrate on the more chaotic as
of this nonadiabatic system. There can be two types of ch
that may occur in a nonadiabatic system;~1! chaos directly
reflecting the chaos on the adiabatic potential surface and~2!
chaos that is induced by the very nonadiabatic interac
itself. The former has already been identified by Leitn
et al. using Jahn-Teller molecules@24#. To identify the latter
class, we compare the nonadiabatic system with the co
sponding lower adiabatic system fromstatistical points of
view by systematically scanning the values of the nonad
batic coupling constant and the Duschinsky angle. The m
sures we employ are rather popular ones; the nea
neighbor spacing distribution~NNSD! of energy levels@3#,
D3 statistic of Dyson and Mehta@3# ~or called spectral rigid-
ity @11#! and the amplitude distribution of the eigenfunctio
@4,25#. Here we show a numerical evidence of the existe
of the second class of chaos. This chaos is really intrinsi
nonadiabaticity in that no classical chaos can play a role

This paper is organized as follows: In Sec. II, we descr
Heller’s TMTS system and the numerical procedures to
tain the energy levels and eigenfunctions of the system
Sec. III , we investigate the statistical properties of the
ergy levels and eigenfunctions of the system. In Sec. IV,
corresponding properties of the lower adiabatic system
examined. In Sec. V, we summarize the paper, identify
the nonadiabatic chaos.

II. HELLER’S TMTS SYSTEM
AND NUMERICAL PROCEDURES

We now introduce Heller’s TMTS system along with o
numerical procedure to obtain the energy spectrum.
starting Hamiltonian is~see Fig. 1!

H5S Tkin1VA J

J Tkin1VB
D , ~1!

where

Tkin5
1

2
~px

21py
2!, Vi5

1

2
~vx

2j i
21vy

2h i
2!1e i ~ i 5A,B!

~2!

with

jA5x cosu2~y2a!sinu, hA5x sinu1~y2a!cosu,
~3!
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jB5x cosu1~y1a!sinu, hB52x sinu1~y1a!cosu.
~4!

Note that this is different from our previous choice of th
coordinates@22#, and is the same as Heller’s:Tkin is a nuclear
kinetic energy,Vi ( i 5A,B) diabatic potentials of each elec
tronic statei, J the nonadiabatic coupling constant betwe
the electronic states, ande i ( i 5A,B) the energy minima of
the potentials. The geometrical meanings ofa and u are il-
lustrated in Fig. 1. A nonvanishingu, which corresponds to
the so-called Duschinsky angle@26#, causes a complicate
coupling betweenx andy ~Duschinsky effects!. The relevant
crossing seam is denoted by a dotted line in Fig. 1. In t
coordinate system, it is approximately given byy50. ~See
also @22#.!

To obtain the energy levels and eigenfunctions of
TMTS system, we directly diagonalize the Hamiltonian
the system. To this end, we first unitarily transformH with

U5
1

A2
S 1 1

21 1
D

such that

H̃5U†HU5S Tkin1V12J V2

V2 Tkin1V11JD , ~5!

whereV65(VA6VB)/2 are explicitly given by

V15
1

2
ṽx

2~x2ã!21
1

2
ṽy

2y22
1

2
ṽx

2ã21
1

2
ṽy

2a21
eA1eB

2
,

~6!

V25~Dv!2xy2ṽy
2ay1

eA2eB

2
, ~7!

and

ṽx
25vx

2 cos2 u1vy
2 sin2 u, ṽy

25vx
2 sin2 u1vy

2 cos2 u,

~Dv!25~vy
22vx

2!cosu sinu, ã5
~Dv!2

ṽx
2

a.

FIG. 1. A schematic representation of Heller’s TMTS syste
The distance between the centers of the potentials is 2a, and the
angle between the relevant crossing seam~dotted line! and the pri-
mary axis of each potential~dashed line! is u. Inset: The perspec-
tive of the TMTS system. The desymmetrization is represented
the difference of the energy minima:De5eB2eA .
1-2
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Now we define the eigenstates ofTkin1V1 as unx ,ny&, i.e.,

~Tkin1V1!unx ,ny&5Enx ,ny
unx ,ny&, ~8!

Enx ,ny
5\ṽx~nx11/2!1\ṽy~ny11/2!. ~9!

We also define electronic states that rotate the diabatic s
u i & ( i 5A,B) by U†, i.e.,

u1&&[U†uA&5~ uA&1uB&)/A2, ~10!

u2&&[U†uB&5~2uA&1uB&)/A2. ~11!

Then, by taking the direct product ofunx ,ny& and u i &&
( i51,2) as a basis set to express the Hamiltonian, we ob
the matrix elements analytically as

^nx ,nyuH11unx8 ,ny8&5^nx ,nyuTkin1V12Junx8 ,ny8&

5~Enx ,ny
1e1!dnx ,n

x8
dny ,n

y8
, ~12!

^nx ,nyuH22unx8 ,ny8&5^nx ,nyuTkin1V11Junx8 ,ny8&

5~Enx ,ny
1e2!dnx ,n

x8
dny ,n

y8
, ~13!

^nx ,nyuH12unx8 ,ny8&5^nx ,nyuV2unx8 ,ny8&

5@c1dnx ,n
x8
1c2~Anx11 dnx ,n

x821

1Anx dnx ,n
x811!#~Any11 dny ,n

y821

1Any dny ,n
y811!

1
eA2eB

2
dnx ,n

x8
dny ,n

y8
, ~14!

whereHi j 5 ^̂ i uHu j && ( i , j 51,2), dn,m is the Kronecker delta
function, and

e652
1

2
ṽx

2ã21
1

2
ṽy

2a21
eA1eB

2
7J,

c15@~Dv!2ã2ṽy
2a#A \

2ṽy

, c25
\~Dv!2

2Aṽxṽy

.

We have confirmed convergence of the results by chang
the size of the basis set.~Around E529, we need a;7000
37000 matrix to achieve converged results if the system
‘‘chaotic.’’ ! We also used the screening method@27,22# to
cross check some of the results, and we have demonst
the convergence of the lowest 1200 eigenenergies to at
five significant digits.

The lower adiabatic system is defined by the Hamilton
Tkin1Vad

2 whereVad
25V12AV2

2 1J2. Thus we again use th
eigenstates of the HamiltonianTkin1V1 as the basis set to
represent the matrix elements. For efficient computation
the matrix elements, we have used the Gauss-Herm
quadrature@28#. Nevertheless, this integration is time co
suming, and hence the computational time is much lon
06622
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than in the case of the nonadiabatically coupled syst
Again, we have used the screening method to cross ch
some of the results.

Finally, the system parameters adopted throughout
paper are listed in Table I. In order to study how chaos c
appear generally in nonadiabatic systems, we scan the va
of J ~nonadiabaticity! and u ~Duschinsky angle! to see its
consequence in the statistical properties of the syst
Heller’s system with two~vibrational! modes and two~elec-
tronic! states is a minimal model for this purpose. To o
best knowledge, there has been no work of this kind in
past. The systematic survey in the present approach sh
also be quite useful for our future study of control of non
diabatic systems by means of varying solvents and/or ap
ing external fields@29#.

III. STATISTICAL PROPERTIES
OF THE NONADIABATICALLY COUPLED SYSTEM

A. Statistics of the energy levels

The NNSD of energy levels is one of the established m
sures to identify chaos in nuclear physics and molecule ph
ics. The NNSD’s of model systems~e.g., billiard systems
@2,3#!, and realistic systems~e.g., triatomic molecules@30#!
have been examined in the past, and it has been establi
that the NNSD of a quantum system usually becomes
Wigner type

P~S!5
p

2
SexpH 2

p

4
S2J , ~15!

if the corresponding classical system is chaotic with tim
reversal symmetry. Hereafter we approximately call this ty
the Gaussian-orthogonal ensemble~GOE! type. On the other
hand, the NNSD of a quantum system usually becomes
Poisson type

P~S!5exp$2S% ~16!

if the corresponding classical system is integrable. While
NNSD measures a short-range correlation among the en
levels, theD3 statistic~spectral rigidity! is designed to detec
a long-range correlation among them@3#. The latter is de-
fined by

D3~E,L !5min
A,B

1

LEE2L/2

E1L/2

@N̂~x!2Ax2B#2 dx, ~17!

whereN̂(x) is the unfolded cumulative level density of th
system considered@3#. The average ofD3(E,L) over the
energy, which is denoted byD̄3(L), of a quantum system
usually behaves like

TABLE I. System parameters.

\ vx vy a eA eB

1.0 0.8716 1.1725 3.0 0.0 0.17
1-3
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D̄3~L !5
1

p2
~ ln L20.068!, ~18!

if the corresponding classical system is chaotic with tim
reversal symmetry. This form can also be derived from
GOE @3#. On the other hand,D̄3(L) of a quantum system
usually behaves like

D̄3~L !5
L

15
~19!

when the corresponding classical system is integrable.
Since the nonadiabatic system as well as the other s

boson models have no naive classical counterpart, app
tion of these measures would be doubtful even if they
well established in quantum chaology. Nevertheless,
NNSD’s have been calculated for many other nonadiab
systems successfully: Cederbaum and co-workers@31# stud-
ied Jahn-Teller molecules that have conical intersections
found that the NNSD for NO2 is of the GOE type wherea
that for C2H4

1 has a ‘mixed’ character between the GO
type and the Poisson type. Their model systems havethree
vibrational modes andtwo electronic states. On the othe
hand, Kus´ showed that a simple spin-boson model which h
one ~vibrational! mode andtwo ~electronic! states does no
exhibit any universal character in the NNSD@32#. After the
work of Kuś, Graham and Ho¨hnerbach investigated a simila
spin-boson model with more numbers of spins, and fou
that the NNSD approaches the GOE type even with one~vi-
brational! mode@33#. Their system is considered as a non
diabatic system withone vibrational mode andmanyelec-
tronic states, it is hence interesting to apply the statist
measure to the Heller system withtwo vibrational modes and
two electronic states.

Some notes: We did not desymmetrize the system in c
of u50 andp/2, and therefore the system has a reflect
symmetry with respect to they axis. We have confirmed tha
desymmetrization changes the results only slightly. To c
culate the NNSD’s and theD3 statistics, we unfold the en
ergy levels betweenE.25 and E.35 ~about 600 levels
were included! using a third-order polynomial fitting for the
cumulative level density@31#. In this paper, we do not us
any interpolating formulas like the Brody@34#, or the Berry-
Robnik @24# distributions. The results with increasin
strength of the nonadiabatic couplingJ are shown in Figs. 2
3, and 4, which are discussed below.

1. Weak coupling case

First we investigate the caseJ50.3, which is classified as
a weak coupling ~diabatic! case in the sense thatJ
,\vx ,\vy . In this case, the energy-level statistics for t
system show the anomalous behavior of theharmonic limit
@35# because the system consists of nearly uncoupled
monic oscillators. To eliminate this nongeneric effect,
add the fourth order terms to the diabatic potentials

DVi5
ax

4
j i

41
ay

4
h i

4 ~ i 5A,B!, ~20!
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wherej i andh i have been defined in Eqs.~3! and ~4!, and
ax and ay represent the strength of nonlinearity. Note th
addition of these terms does not induce any chaos in
diabatic systems because the variables are separable.
values of nonlinearity are taken asax50.001,ay50.0012,
which bring about a few percent energy-level differenc
Nonetheless, it makes the energy-level statistics more
neric and natural. See Fig. 2: The NNSD’s foru50 andp/2
appear to be clear Poisson distributions. Each of the ske
systems withu5p/6 andp/3 shows a clear hole atS50,
although they are not a clear GOE~Wigner! type. For the
other cases discussed below~the intermediate and stron
coupling cases!, the inclusion of the nonlinearity does no
qualitatively change the results@29#, so the calculations be
low are performed with the original harmonic potentials.

FIG. 2. Left column: NNSD’s of Heller’s TMTS system with
J50.3 ~weak coupling! and weak anharmonicity. From top to bo
tom, u50.0, p/6, p/3, andp/2. Right column: The correspondin
D3 statistics.
1-4
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CHAOS INDUCED BY A QUANTUM EFFECT DUE TO . . . PHYSICAL REVIEW E63 066221
2. Intermediate coupling case

Next we investigate the intermediate coupling case,
J51.5;\vx ,\vy . ~This is Heller’s ‘‘chaos’’ value@21#.!
From Fig. 3, when the Duschinsky angle has intermed
values, i.e.,u5p/6 or u5p/3, this TMTS system shows th
typically quantum chaotic behavior both in the NNSD a
D3 statistics@see Eqs.~15! and~18!#. This is consistent with
the statement of Heller based on his own spectral crite
@21#. Heller’s criterion of chaos measures an averaged pr
erty of eigenfunctions, while the NNSD andD3 statistic ad-
dress the statistical properties of energy levels. Thus
present intermediate coupling system has been confirme
be chaotic in these aspects.

3. Strong coupling case

We further proceed to the strong coupling~adiabatic!
case, i.e.,J57.5.\vx ,\vy . From Fig. 4, we clearly see

FIG. 3. Left column: NNSD’s of Heller’s TMTS system with
J51.5 ~intermediate coupling!. From top to bottom,u50.0, p/6,
p/3, andp/2. Right column: The correspondingD3 statistics.
06622
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the level clustering and the Poisson trend, especially, fou
5p/6 or u5p/3. However, theD3 statistics deviate from the
straight line@Eq. ~19!# for largeL values. Except for the cas
u50, theD3 statistics have lower values than Eq.~19! and
approach Eq.~18!. This might reflect the mixed~tori 1 sto-
chastic seas! structure of the lower adiabatic system and su
gests the use of some interpolating formulas. Thus the str
coupling case shows mostly a regular spectrum when jud
by the energy-level statistics. It thus turns out that the ch
ticity of the system is not simply monotonic with respect
the magnitude of the coupling parameterJ , although it leads
the system to deviate from the harmonic state and to
proach a more adiabatic-favored and anharmonic situat
Thus, we need to clarify the nature of the dynamics on
corresponding adiabatic state. We will come back to t
issue in the next section.

FIG. 4. Left column: NNSD’s of Heller’s TMTS system with
J57.5 ~strong coupling!. From top to bottom,u50.0, p/6, p/3,
andp/2. Right column: The correspondingD3 statistics.
1-5
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FIG. 5. First row: Eigenfunc-
tions squared~from left to right,
800th, 810th, and 820th! of
Heller’s TMTS system on surface
A with J50.3 ~weak coupling!
and u5p/6. Second row: The
corresponding eigenfunction
~squared! on surfaceB. Third row:
The corresponding amplitude dis
tributions of the eigenfunctions on
surfaceA. The dashed line repre
sents the Gaussian with widths
50.053.
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B. Amplitude distributions of the eigenfunctions

In this section we investigate a statistical property of
eigenfunctions, namely, the amplitude distribution@4,25#.
The amplitude distribution for thenth eigenfunction on sur-
face i ( i 5A,B), denoted byPn

i (f), is defined by the fre-
quency distribution of the amplitude (f) of the eigenfunc-
tion that is randomly sampled at points that are energetic
accessible in configuration space. We actually take;6000
points.

According to Berry@4#, the histogram ofPn
i (f) should

reflect the chaotic property of an eigenfunction. He conj
tured that the amplitude distribution for a classically chao
system should become a Gaussian distribution,

P~f!5
1

A2ps2
expH 2

f2

2s2J , ~21!

with the widths51/AS whereS is the area of the energet
cally accessible region. This is called Berry’s criterion
‘‘chaos’’ for eigenfunctions, and has been tested successf
in the literature@25#. In case of a single surface with a po
tential V(x,y), the areaS is easily identified; it is the area
enclosed by a curve (x,y) satisfyingV(x,y)5E. However,
in case of coupled surfaces as in our nonadiabatic system
meaning ofS is not necessarily clear. In this paper, we su
gest using the sum of the areas enclosed byVi(x,y)5E on
06622
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-

each diabatic surface. That is, each surface has the
;2pE/vxvy , then the width is expected to be

s.Avxvy

4pE
.0.053, ~22!

where we have usedE.29 that is the energy of interest. Th
results forPn

A(f) are shown in the third rows of Figs. 5, 6
and 7 with the corresponding eigenfunctions on the diab
surfaces~first and second rows!. In terms of this criterion, let
us examine selected eigenfunctions: 800th, 810th and 8
with u5p/6 for each coupling strengthJ50.3, 1.5, and 7.5.
Their energies are around 28229, which are much highe
than the bottle-neck energy of the lower adiabatic surf
;4.7.

1. Weak coupling case

In Fig. 5, we can see that the amplitude distributions
more or less different from the Gaussian, Eq.~21!, with the
width, Eq.~22!. These eigenfunctions have rather clear no
patterns that can be easily counted. Hence these ampli
distributions are far from chaos. Since there are many em
regions inside the equienergy contour, their amplitude dis
butions concentrate atf50. The top-right figure of Fig. 5
seems a little ‘‘disordered,’’ but the amplitude distributio
still deviates from the Gaussian. Thus these eigenfuncti
turn out to be nonchaotic.
1-6
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FIG. 6. First row: Eigenfunc-
tions squared~from left to right,
800th, 810th, and 820th! of
Heller’s TMTS system on surface
A with J51.5 ~intermediate cou-
pling! and u5p/6. Second row:
The corresponding eigenfunction
~squared! on surfaceB. Third row:
The corresponding amplitude dis
tributions of the eigenfunctions on
surfaceA. The dashed line repre
sents the Gaussian with widths
50.053.

FIG. 7. First row: Eigenfunc-
tions squared~from left to right,
800th, 810th, and 820th! of
Heller’s TMTS system on surface
A with J57.5 ~strong coupling!
and u5p/6. Second row: The
corresponding eigenfunction
~squared! on surfaceB. Third row:
The corresponding amplitude dis
tributions of the eigenfunctions on
surfaceA. The dashed line repre
sents the Gaussian with widths
50.053.
066221-7



HIROSHI FUJISAKI AND KAZUO TAKATSUKA PHYSICAL REVIEW E 63 066221
FIG. 8. Poincare´ surfaces of
section for the lower-adiabatic
system (E528). The nonadiabatic
coupling is J50.3 ~left!, 1.5
~middle!, and 7.5 ~right!. The
Duschinsky angle isu5p/6.
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2. Intermediate coupling case

From Fig. 6, we can clearly see that the amplitude dis
butions with a variety of energies are very similar to t
Gaussian. Therefore, according to Berry’s criterion, the s
tem with the above choice of parameters is well ‘‘quantu
chaotic.’’ This result reinforces Heller’s conclusion@21#
based on his spectral criterion@23# . ~Note, however, that the
spectral criterion uses only anaveragedproperty of eigen-
functions.! Thus it turns out that the intermediate couplin
case is an undisputed chaos by any statistical measure.

3. Strong coupling case

The strong coupling case~Fig. 7! is in a sense similar to
the weak coupling case: the amplitude distributions more
less deviate from the Gaussian. All these figures exhibit c
nodal patterns that can be easily counted. In fact, we can
that left two are confined in a torus whereas the right mos
confined in another torus. Though not shown here, this
be clearly confirmed if one uses the adiabatic representa

IV. STATISTICAL PROPERTIES
OF THE LOWER ADIABATIC SYSTEM

A. Poincaré surface of section

To identify and distinguish two types of chaos in non
diabatic systems as stated in the Introduction, namely, ch
06622
i-

s-

r
ar
ee
is
n
n.

-
os

of a direct reflection of that on the adiabatic potential surfa
and intrinsic chaos purely induced by the nonadiabatic in
action, a comparative study of dynamics on the correspo
ing adiabatic system is inevitable. We here study theJ de-
pendence of the lower adiabatic system fixingu5p/6.

The classical Poincare´ surfaces of section at the crossin
seam (y50) are drawn in Fig. 8@22#. It turns out that the
ratio of chaotic sea to tori~stable area! does not change dras
tically with J, and that the area of the latter is rather wid
than that of the former. Thus, it is highly expected@24# that
none of the forecasted NNSD’s should be similar to the G
type in contrast to the case of the full coupled system w
J51.5. We next confirm this by actually calculating the s
tistical properties of the energy levels and eigenfunctions
the lower adiabatic potentials.

B. Statistics for the energy levels

The NNSD’s andD3 statistics are shown in Fig. 9. Bot
of these measures suggest that the level statistics are
cally ‘‘regular.’’ Following the tentative argument using th
Berry-Robnik distribution@24#, the chaos-tori ratio is nearly
equal to the Berry-Robnik parameterq, and this implies, in
this case, that the NNSD’s are rather similar to the Pois
type. We recall that the nonadiabatic system withJ57.5
~strong coupling! is mostly regular in the energy-level stati
tics. This is presumably so because the strong coupling c
is close to the adiabatic limit and the dynamics on the no
diabatic system should be dominated by that on the co
FIG. 9. First row: NNSD’s of
the lower adiabatic system. From
left to right, J50.3, 1.5, and 7.5
while fixing u5p/6. Second row:
The correspondingD3 statistics.
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FIG. 10. First row: Eigenfunc-
tions squared~from left to right,
656th, 664th, and 671st! of the
lower adiabatic system withJ
51.5 and u5p/6. Second row:
The corresponding amplitude dis
tributions. The dashed line repre
sents the Gaussian with widths
50.062.
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sponding adiabatic potential surface. In fact, the measure
the adiabatic and nonadiabatic cases withJ57.5 are similar.

C. Amplitude distributions of the eigenfunctions

Selected eigenfunctions~656th, 664th, and 671st! of the
lower adiabatic system withJ51.5 andu5p/6 are shown in
Fig. 10 with the associated amplitude distributions. N
that, in this case, we takes50.062 because the area e
closed by the equienergy contour withE.28, which is the
energy of interest, is.260. As are the cases of Figs. 5 and
these amplitude distributions deviate more or less from
Gaussian, indicating a nonchaotic feature. This is consis
with the level statistics shown in the middle figures of Fig.
Note that these parameter values induced strongly cha
features in the corresponding nonadiabatic system. Neve
less, the eigenfunctions on the adiabatic potential surface
this case are mostly regular in the energy range studied.
is due to the ‘‘quantum smoothing’’ effect@36#, and it might
be said, in turn, that nonadiabaticity breaks the quan
smoothing effect.

V. SUMMARY

The statistical properties for the nonadiabatic and the c
responding adiabatic systems we have numerically obse
are summarized in Table II. We thus conclude that the ch
in the nonadiabatic system with the intermediate coupl
(J51.5) and the intermediate Duschinsky angle~e.g., u
5p/6) has been induced purely by the nonadiabatic c
pling, which is peculiar to quantum mechanics. Leitneret al.
made an extensive study to compare nonadiabatic sys
~Jahn-Teller molecules! with their adiabatic counterparts~the
lower adiabatic systems! @24#. They say that ‘‘most of the
irregularity in the full spectra arises from the irregularity
the spectra obtained using the adiabatic potential.’’ The c
investigated by Leitneret al. might be quite universal and
natural for JT molecules. On the other hand, the chaos in
nonadiabatic system is not a simple reflection of chaos on
06622
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lower adiabatic potential surface nor that on the diabatic s
face ~the diabatic surface is a harmonic potential!. We can
draw this conclusion from the fact that the adiabatic case~the
middle of Fig. 9! indicates rather Poisson trends for bo
measures~the D3 statistic is along the Poisson line untilL
.5), whereas the nonadiabatic case~the second row in Fig.
3! indicates completely GOE trends for both measur
Therefore, as far as we know, this is the first evidence t
‘‘chaos’’ can be induced by the nonadiabatic coupling with
the pure quantum mechanical scheme. Hence we think th
deserves to be called ‘‘nonadiabatic chaos’’ to distinguish
from the chaos studied by Leitneret al.

The present paper has been concentrated on the stati
properties of spectra and amplitude distribution of the eig
states. To clarify the dynamical nature of the present cha
however, more should be explored. The mechanism and
nario of onset of the chaos needs to be elucidated. In part
lar, the relationship between the genesis of chaotic eig
functions and the dynamics of surface hopping should
clarified @22#. In this regard, our comparative study betwe
the hopping trajectories and the corresponding chaotic eig
functions ~Figs. 6, 7, and 8 in Ref.@22#! shows that the
simple surface-hopping view can well represent the first
der feature of the wave functions in an initial stage. Ho
ever, such an intuitive picture of ‘‘mode mixing’’~chaos! is
eventually deteriorated, since the interference effect is es
tial to produce quantum spectra. To study further, the pa
integral methods and/or semiclassical methods must be

TABLE II. Characteristics of the TMTS system with the inte
mediate Duschinsky angle (u5p/6). The other parameters ar
listed in Table I.

Lower adiabatic
system

Nonadiabatic
system

Weak coupling (J50.3) ;mixed ;mixed
Intermediate coupling (J51.5) ;mixed chaos
Strong coupling (J57.5) ;mixed ;mixed
1-9
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ful to take account of an interference effect arising from
hopping motions. Also, the kind of nonadiabatic coupling
i.e., the types of avoided crossing and conical intersect
should make a difference. The evolution of the chaotic pr
erty in eigenfunctions as a function of the magnitude of
nonadiabatic coupling is a very interesting subject to be s
ied. We will discuss these aspects in our future publicati
cs
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@32# M. Kuś, Phys. Rev. Lett.54, 1343~1985!.
@33# R. Graham and M. Ho¨hnerbach, Phys. Rev. Lett.57, 1378

~1986!; in Quantum Measurement and Chaos, edited by E. R.
Pike and S. Sarkar~Plenum, New York, 1987!.

@34# T. Terasaka and T. Matsushita, Phys. Rev. A32, 538 ~1985!;
A. Shudo and T. Matsushita,ibid. 39, 282 ~1989!.

@35# M. V. Berry and M. Tabor, Proc. R. Soc. London, Ser. A356,
375 ~1977!; A. Pandey and R. Ramaswamy, Phys. Rev. A43,
4237 ~1991!; L. Ji-zhi, ibid. 49, 48 ~1994!.

@36# W. P. Reinhardt, J. Phys. Chem.86, 2158~1982!; C. Jafféand
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